Analyzing Software lirrorsin Safety-Critical,
FEmbedded Systems

RobynR. 1 atz*
Jet Propulsion Laboratory

California Institute of Technology
Yasadena, CA 91109

February 24, 1994

A bstract

This paper analyzes tne rool causes of safety-rdatccl software faultsin safety -
critical, embedded systems. The results show that software faultsidentified as po-
tentially hazardous to the system are distributed somewhat diflerently over the set of
possible error causes than non-safety-related software faults. Safety-rdatcd software er-
rors arc shown to arise most commonly from (1) disc repancies between the documented
requirements specifications and the requirements needed for correct functioning of the
systemand (?,) misunderstandings of the software's interface With therest of thesys-
tem. The paper uses these results to guide theidentification of strategies to prevent
sucherrors in other similar systems.The goal is to reduce safety-rdatcd softwarce crrors
and to enhance the safety Of complex, embedded systemns.

1,Introduction

This paper examines 387 software faults uncovered during integration and system testing
of two spacecraft, Voyager and Galilco. The standard 1KEL definitions of a faull as “a
manifestation of an error in software Synonymous with bug;” of an error as “humnan
action that results in software containing a fault;” and of a failure as “an cvent in which a
system or system component does not perform a required function within specified limits”
arc used here [7, 8]. Kach of thie 387 software faults was documented at thetime of discovery
by aforin describing the anomaly or failure thatindicated the existence of a software fault.
The form also recorded the subscquent analysis and the corrective actions taken,

As part of the standard procedure for correcling cachreported software fault, the failure
cffect of cach is classified as negligible, significant, or catastrophic. ‘1 hose classificd as signif-
icant or catastrophic arcinvestigated by asystems safety analyst as representing potential

* Author’s mailing address is Dept. of Computer Science, lowa State University, Ames, |A 50011. The

rescarch described in this paper was carried out by the Jet Propulsion Laboratory, California Institute Of
Technology, under a contract with NASA.

safety hazards [1 5], For this studythe 74 (of 134) software faultson Voyager and 121 (of
253) software faults on Galileo documented as having potentially significant or catastrophic
cffectsare classified as safety-mlatcd.

The spacecrafts’ software is safety-critical inthat it Ino]-liters and controls components
that canbe involved in hazardous systcm bcehavior [1 3]. The software must execute in a
system context without contributing unaceeptable risk.

Ilach spacecraft involves embedded software distributedon several different flight comput-
crs. Voyager hasroughly 18,000 lines of source code; Galileo has over 22,000 [20]. Fmbedded
software is software that runs 011 a computer systemthat is integral to a larger system whose
primary purposc is not computational [7]. The software onboard the spacecraft controls
the engineering and science acquisition) processes required for interplanctary missions. The
software 011 both spacecraft is highly interactive intermsof the degree of mnessage-passing
among system components, the need to respondin real-tilnc to monitoring of the hardware
and environment, ant] the complex timing issues among parts of thesystem. The software
development for each spacecraft involved multiple teams working for a period of years.

The purpose of this paper is toidentify the extent and ways inwhich the cause/effect
relationships of safety-rclatccl software crrors difler from the cause/cflcct relationships of non-
safety-related software errors. Preliminary results were reported in [1 6]. In particular, the
analysis shows that human errors inidentifying or understanding functional and interface
requirements frequently lead o safety-related software faults. This distinction is used to
guide thcidentification of error mechanisms through which the cornmon human and process
causes of the safety-rclatccl software faults studicd here canbetargeted during development.
The god is to improve system safety by understanding and, where possible, removing the
preval ent sources of safct y- related software errors.

The paper is organized as follows. Scction Il describes the methodology used. Section 111
presents the results of the analysis. Section 1V indicates how these results fit into the context
of prior work on software errors. Scction V discusses some possible strategies for reducing
safety-rclatccl software crrors using the current results. Section VI provides a summary and
identifies future work.

11. Methodology

A. Overview

The study described here characterizes the root causes of the safety-rc>latcd software faults
discovered during integration and system testing. ‘J herecent work by Nakajo and Kume on
software error cause/cflcct relationships offers anappropriate framework for classifying the
software errors [1 8]. Their work is extended here to account for the additional complexitics
operative in large, safcty-critical, embedded systen s with evolving requirements driven by
hardware and environmental issues.

Previous studies of software errors have dealt primarily with fairly simple, non-cmbedded
systems infamiliar application domains (scc Section IV for a discussion). Requirements
specifications in thiese studies generally have been assumed to be correct, and safety issues
have not been distinguished from program correctness. The work presented here instead

Progiam Fault

[

Human Error
(Root Causc)

Process Flaws
(Control of Software Complexity

+ Inadequacies in Communication/
Development Methods)

Figure 1: Analyzing Causc/Eflect Relationships for Safety-1{clatcd Software Irrors

builds onthat in [18] to analyzc software crrorsin safety-critical, embedded systems with
evolving requirem cnts.

Nakajo and Kume’s classification scheme analyzes three points in the path from a soft-
ware defect backwards to its sources. Thisapproach allows classification not only of the
documen ted program fault (the manifestation of an error inthe software, c.g., an incorrect
interface), but aso of the carlier human error (the root c.dust, eg., a misunderstanding of
aninterface specification), and of the even-car]icr process flaws that contribute to the likeli-
hood of the error's occurrence (e.g., inadequatce communication between systems engineering
and software development teams). Figure 1 presents a summary of these three points in
the causel/effect analysis. The classification scheme thus leads backwards intime from the
obscrved software faultl to an analysis of the root cause (usually a communication error or an
error in recognizing or deploying requircments),toan anal ysis of the software development
process. An overview of the classification scheme,adjusted to the needs of safety-critics],
cmbedded software, follows.

« Program Faults (Documented Software Errors)

A. Internal Faults (e.g., syntax)

B. Interface Faults (interactions with other system components, such as transfer of
data or control)

3. Functional Faults (operating faults: omission or unnccessary operations; con -
tional faults: incorrect condition or limnit values; behavioral faults: incorrect be-
havior, not conforming to rcquirements)

« 1luman Errors (Root Causes)

A. Coding or Editing Errors

B1. Communication Errors Within a Team (misunderstanding software interface spec-
ifications)

B2. communication Errors 13ctween Teams (misunderstan ding hardware interface spec-
ifications or other team’s software specifications)

cl. ErrorsinRecognizing Requirements (misunderstanding specifications or problem
domain)

C2. Frrors in Deploying Requirements (problems implementing or translating require-
ments into a design)

« Process Flaws (¥laws in Control of System Complexity 4 Inadequacies in Communi-
cation or evelopment Methods)

A. Inadequate Code Inspection and Testing Methods

B1. Inadcquate Interface Specifications -i Inadequatec Communication (among soft-
ware developers)

112. Inadecquatc Interface Specifications + Inadequate Communication (between soft-
ware and hardware developers)

C1. Requirements Not ldentified or Understood - Incomplete Documentation

C2. Requirements Not Identified or Understood -1 Inadequate Design

By comparing common crror mechanisms for the software faults identified as potentially
hazardous with those of thecother software faults, the prevalent root causes of the safety-
rclated program faults arc isolated, I'he classification of the sources of error isthen applied
here to determine countermeasures which may prevent similar error occurrences in other
safety-critical, embedded systems. This paper thus uscs the classification scheme to assemble
an error profile of safety-related software crrors and to identify developiment methods by
which these sources of error may be able to be controlled insimilar systems.

B. Classification Critera

Fach program fault was classified and error causes assigned based on thein formation con-
tained inthe standard reporting form that documents cach fault found during integration
and system testing. This one-page form includes three textual descriptions which served as
the primary source for the classification of the fault. The first description is of the observed
problem or failure, written by the individual who observed it during integration or system
testing. The second description is a later analysis of the error by the individual responsible
for the module or componentinwhichthe problem occurred. This analysis may also expand
or clarify the initial description of the problem by theoriginator. The third part of the form
describes thc corrective action taken to {ix the problem (e. g., a software and docum entation
changc). 1t also describes the test result, inspection, or review that confirins the adequacy
of the correction to prevent rccurrence. Thercare also several check-ofl boxes 011 the form,
but these refer primarily to hardware issues (cog,, vibrationtesting, picce-part failure),
Additional pages (analysis results, test data, related mcrnos) arc sometimes attached to
the form during the process of analysis and correction. This additional information was

valuable in the study, as it provided insight into the human errors and process weaknesscs
that the spacecraft engincers and programmers saw.

in general, the primary criteria for classification was the documented judgment of the
individuals who analyzed the crror and validaled that the required change in fact prevented
the recurrence of the anomaly. Occasionally, overlapping faults or errors were documented
on asingle form (c.g. both an interface fault and a functional fault). in those cases, the
classification reflects the programmer or engincer’s judgment as documented on the form
concerning which was the kcy cause of the observed problem. Additional discussion of error
calegorization is presented in [18] . An ongoing, multi-project investigation will address the
issue of repeatability (do different analysts classify a given error in the same way?).

Clearly, the attribution of a kcy human error and. a kcy process flaw to each software
fault oversimplifics the cause/effect rclationship. 1 lowever, the identification of these factors
allows the characterization of safety-rc]atcd softwarc errors ina way that relates features of
the devclopment process and of the system under development to the safety consequences
of those features. Similarly thc association)) of cach software fault with a human crror, while
unrcalistic (in what senisc is a failure to predict details of system behavior an error?), alows
a. useful association between human factors (such as misunderstanding the requirements or
thc underlying physical realities) and their safety-rclatcd conscquences.

ITI. Analysis of Safety -Related Software Defects

A. Program Faults

The six tables in the Appendix show the proportion and numnber (in parentheses) of non-
safet y-related software faults, errors, an d process flaws as compared to safct y- related software
faults, errors, and process flaws for cach of the two spacecraft. The results arc summarized in
the text in a series of bar graphs, The bar graphs contrast the distribution of error causes for
allthe safety-related faults with the distributionof error causes for al the llc)ll-safety-relatccl
faults. Any significant diflerences between the data from the two systems is discussed in the
text with reference to the detailed tables inthe Appendix.

Safety-rclatccl software faults account for about half of the total software faulisdiscovered
during integration and systern testing on cach of the two systems studied (55% for Voyager,
48% for Galileo), Jew inlernal faults (e.g., codingcrrorsinternal to a software module) were
uncovered during integration and system testing. Anexamination of software faults found
later during operations also shows few internal faults. It appears thatthcese coding errors
arc being detected and corrected before systern testing begins. They thus arc outside the
scope of this paper and are not discussed further here.

The distribution of program faults for safety-related and non-safety-rcjatcd faults in the
two systcms is shown in Figure 2. As can bescen, the two distributions display similar
proportions of internal, interface, and functional faults. IFunctional faults (operating, con-
ditional, or behavioral discrepancics froin the functional requirements) account for almost
t}Ircc-quarters of both safety-rclatcd and non-safety-rcla.tcd program faults. The analysis
summarized in Figurc 2 and detailedin Table 1 of the Appendix also identifies interface
Jaulls (incorrect interactions with other system components, such as the timing or transfer

[PETT

Internal Interface Functional

B Nojl-Safc[y-Related B safely-Related

Figure 2: Distribution of Program Faults: Safety-]tclatccl and Non-Safety-Related

of data or control) as a significant problem (35% of the safety-rclaimcl program faults on
Voyager; 1 9% on Galileo). The high incidence of interface faults in these complex, embed-
dcd systems contrasts with the low incidence of interface faultsin earlier studies on simpler,
standalone software. (See Section 1V for a discussion of this issue.)

Figure 3 examines the predominant type of program fault, the functional fault, in more
detail, A significant difference between safety- related and non-safety-related conditional
faults is apparent. Conditional faults (nearly aways crroncous values on conditionsor limits)
tend to be safety-related in the two systems studied. Even though adjusting the values of
limit variables during testing is considered to bef{airly routine, the casc of change obscures
the difliculty of determining the appropriate value and the safety-related conscquences of an
inappropriate limit value. Erroneous vaues (e. g., of dcadbandsor delay timers) often involve
risk to the spacecraft by causing inappropriate triggering of an crror-recovery response or by
failing to trigger a nceded response. The association between conditional faults and safety -
rclated software errors emphasizes the importance of specifying the correct, values for any
data used in control decisions in safety-critical, ecmibedded software.

Some differences betweenthe distribution of faults on the two spacecraft exist (see ‘Jable
2). On Voyager fully hallf the safety-related functional faults arc attributable to behavioral
faults (the software behaving incorrectly). OnGalilco, aslightly greater percentage is due
to operating faults (nearly always a required but omiticd opcration in the software) than
to behavioral faults. often the omitted operation involves the failure to perform adequate
rcasonableness checks on data input to a module. This {frequently results in an error-rwcovcry
routine being called inappropriately.

B. Relationships Between Program Faults and Human Errors

Having classified each program fault, the second step in the cause/effect analysis is to trace
backwards in time to the human factorsinvolved in the prograin faults that were discovered

6

Operating Conditional Behavioral
4 Sefety-Rolalcd

Non-Safety-Rclateci

Figure 3: Distribution of I'unctional Faults

during integration and system testing. Figure 4 and Figure 5 summarize the relationships
between the major types of program faults and the most frequent contributing crrors for the
two systems studied. Yorinterface faults, the major human factors arc either communication
errors within a development team or communication errors between a development team
and other teams. In the latter case, a further distinction is inade between misunderstanding
harclwarc/software interface specifications and misunderstanding theinterface specifications
with other software components.

Significant diflcrences appear in the distribution) of error causes bet ween safet y-rel at ccl
and non-safety-rc]atcd intcrfacc faults. Figure 4 shows that the primary human error caus-
ing safety-related interface faults is misunderstood hardware/software interface specifications
(65% on Voyager; 48% on Galileo). Iixamples arc faults caused by wrong assumptions about
the initial state of relays or by unexpected hecartbeatl timing patterns in a particular operat-
ing mode. On the other hand, the human errors causing non-safety-mlatcd interface faults
arc distributed more evenly among the three categories. The profiles of safety-related inter-
face errors assembled in Figure 4 and ‘Jable 3 of the Appendix emphasize the importance of
devclopers understanding the software as a set of embedded components in a larger system.

The distribution of error causes for safety-related functional faulls also differs substan-
tially from the distribution of error causes for non- safety-related functional faults. Figure 5
identifies the primary cause of safety-rclatcd junctional faulis as errors in recognizing (un-
derstanding)the requirements (62% on Voyager, 79% on Galileo). On the other hand, non-
safety-related fun ct ion a faults arc more often cau sed by errors in deploying (implementing)
the requirements.

g able 4 provides further detail. Safety-related conditional faults (erroneous condition
or limit values) are almost always caused by crrorsin recognizing requirements. Errors in
recognizing requirecments also cause safety-related opcerational faults (usually the omission of
a required operation) and behavioral faults more often than errors in deploying requirements.
gable 4 reflects deficiencies in the documented requirements as well as instances of unknown
(at the time of requirements specification) but nccessary requirements for the two spacecraft,

Communication Misunderstood ~ Misunderstood
Within Teams Hardware/Software So fiware

Interface

Non-Safety-Relale.d

Figure 4: Root Causes (Iluman Errors) of Interface Faults

Interface

B# Safety-kclalcd

Requirement
Recognition

Non-Safely-Related

Figure 5. Root Causes (lluman Errors) of Functional Faults

Requirement
Deployment

Safety-Related

Interfaces Not Anomaous
Identified/Understood 1lardware Behavior
i Non-Safety-Rclawl i Safely-Relatec]

Figure 6: Process Flaws (Control of System Complexity) Causing Interface Faults

In summary, diflicultics with requirements is the most common human error causing the
safety-related software errors which have persisted until integration and system testing in
these two systems. The tables point to errors in understanding the requirements specifica-
tions for the software/systcnl interfaces as theinost frequent cause of safety-rclatccl interface
faults. Similarly, errors in recognizing therequirements is the most frequent cause leading
to safety-related functional faults.

C. Relationships Between Human Errors and Process Flaws

In tracing backwards from the program faults to their sources, features of the systcin-
development process can be identified which facilitate or cnable the occurrence of errors.
Discrepancics between the difliculty of the problermn and the mecans used to solve it may
permit hazardous software errors to occur [5].

The third step of the cause/effect analysis thercfore associates a pair of process flaws with
cach program fault [1 8]. The first element in the pair identifies a process flaw or inadequacy
in the control of the system complexity (e.9., requirements which arc not discovered until
system testing). The second element of the pair identifies an associated process flaw in the
communication or developmenl methods used (c.g.,imprecisc or unsysteratic specification
methods).

The two elements of the process-flaw pair arc closcly related. Frequently, as is discussed
in Sect. V, a solution to onc flaw will provide a solution to the rclated flaw. For example, the
lack of standardization cvidenced by an ambiguous interface specification (an inadequacy in
the control of system complexity) and the gap in intertcain communication evidenced by a
misunderstood interfacc specification (an inadequacy in the communication methods used)
might bothbe addressed by the project-wide adoption of the same CASE tool.

Figurc6 relates interface faults and their human causes to process flaws involving system
complexily. The figure shows that the process flaw interfaces inadequately identified or
understood, a flaw which involves control of system complexity, is often associated with

Undocumented Interface Communication Undocumented
Interface Design Bet Ween Hardware
Requirements Teams Bchavior

Sdfety-Related

1 Non-Safety-Related

Figure 7: Process Flaws (Communication/Development Methods) Causing Interface Faults

both safet y-rclated and non-safet y-related interface faults. However, safety-related and non-
safety-related interface faults differ in that anomalous hardware behavior is a more significant
factor in safety-related than in Ilon-safety-related interface faults. It is often associated with
interface design during system testing, another indication of a unstable software product.

IYigurc 7 relates interface faults to process flaws involving communication or development
methods. Again, differences in the distribution of causes for safety-related and non- safety-
related interface errors is evident. Undocumented interface requirements is the most frequent
flaw for non-safety-related intcrface faults, whilc undocumented hardware behavior is the
most frequent flaw for safety-related interface faults.

Tables 5 and 6 show that there arc significant differences in the process flaws that cause
errors betweenthe two spacecraft. Interface design during testing is involved in almost
one-fifth of the safety-critical interface faults on Voyager, but in none of them on Galilco.
This is because on Voyager a set of related hardware problems generated nearly half the
safety-related interface faults. On the other hand, the problemn of interface specifications
that arc known but not documented is more common on Galileo. This is perhaps due to the
increased complexity of the Galileo interfaces. With regard to functional faults, although
missing requirements arc a frequent process flaw on Loth spacecraft, on Voyager inadequate
design also occurs frequently, while on Galileo imprecise specifications often occur.

IFigure 8 summarizes the relationships between process flaws involving control of system
complexity and fun clional faults. For junctional faulls,requirements not identified and
requirements not understood arc the most common complexity-control flaws. Safety-related
functional faults arc more likely than non-safety-rclatcd functional faults to be caused by
requirements which have not been identified (55% vs. 41 %).

With regard to process flaws involving communication or development methods, Fig-
urc 9 shows that missing requirements arc involved in nearly half (42%) of the safety-related
functional faults, but in only 25% of thc non-safety-related functional faults, Imprecise or

10

Requirements Requirements
Not Identified Not Understood

Non-Safety-Related B3 Safety-Related

Figure 8: Process Flaws (Control of System Complexity) Causing Functional Faults

Specifications Missing Incomplete Inadequate Coding
Imprecise Require- Docunien- Design Errors
ménts tation

D Non-Safc[y-Related Safely-Related

Figure 9: Process Flaws (Commumcatlon/])cvc]opmcnt Methods) Causing Functional Faults

1

Interface Fault ‘ [Functional Fault 1

R R

Communiization Failure TO
Between Teams Recognize Requif&heme =
e [I T T T T I O :
o v S
Interfaces Not Requirements Not
| dentified/Understood Identified
+
Undocumented Hardware +
Behavior Missing Requirement

Figure 10: Frequent Causc/Effect Relationships for Safety-lielatcd Software Errors

unsystematic specificalions arc also more often a factor in safety-related than in non-safety -
related functional faults. These results suggest that the sources of safety-rclatccl software
errors lic farther back in the software development process-in inadequate specification or un-
derstanding of requirements-whereas the sources of non-safety-related errors more commonly
involve inadequacies in the design phase.

Figure 10 summ arizes these results graphically. It displays two of the cause/effect mech-
anisms that occur frequently in the two spacecraft, resulting in safety-related interface faults
an cl safel y-related functional faults.

IV. Comparison of Results with Previous Work

Although software errors and their causes have been studied extensively, the current work
differs from most of the prior investigations in the following four ways:

1) The software chosen for analysis in most studies is not embedded in a complex system as
it is here. The consequence is that the role of interface specifications in controlling software
hazards has been undecrestimated.

2) Unlike the current paper, most studies have analyzed fairly simple systems in familiar and
wcl]-understood application domains. Conscquently, fcw software faults have been found
during system testing in most studies, lcadingto a gap in knowledge regarding the sources
of these more-persistent and often more hazardous faults.

3) Most studies assume that the requirements specification is correct. On the spacecraft,
as in many large, complex systems, the requirements evolve as knowledge of the system’s
behavior and the problem domain evolve. Similarly, most studies assume that requirements
arc fixed by the time that systems testing begins. Thislcads to a underestimation of the
impact of unknown requirements on the scope and schedule of the later stages of the software
development process.

4) The distinction between causes of safety-critica ancl non-safety-critical software errors has

12

not been adequately investigated. Efforts to cnhance systcm safety by specifically targeting
the causes of safety-related errors, asdistinguished from the causes of all errors, can take
advantage of the distinct error mechanisms, asdescribed in Sect. 5.

A brief description of the scope and results of some related work is given below and
compared with the results presented in this paper for safety-critical, embedded computer
systems.

Nakajo and Kumc categorized 670 errors found during the software development of two
firmware products for controlling measuring instruments and two software products for in-
strument mecasurement programs [18]. Over 90% of the errors were either interface or func-
tional faults, similar to the results reported here.

Unlike the results described here,Nakajo and Kumc found many conditional faults. It
may be that unit testing, as on the spacecraft) findsmany of the conditional faults prior
to system testing. While the kcy human error on the spacecraft involved communication
between teams, the kcy human error in their study involved communication within a devel-
opment teamn. Both studies identified complexity and documentation deficiencies as issues.
1 lowever, the software errors on the spacecraft tended to involve inherent technical complex-
ity, while the errors identified in the earlier study involved complex correspondences between
requirements and their implementation. I'inally, the kcy process flaw that they identified
was a lack of methods to record known interfaces and describe known functions. In the
safety-c.ritical, embedded software on the spacecraft, the flaw was more often a failure to
identify or to understand the requirements.

Ostrand and Weyuker categorized 173 errors found during the development and testing
of an editor system [21]. Only 2% of the errors were found duringsystem testing, reflecting
the simplicity and stability of the interfaces andrcquirements. Most of the errors (61%)
were found instead during function testing. Over half thesc errors were caused DY omissions,
confirming the findings of the present studythat omissions arc a major cause of software
errors,

Schncidewind and Hoflmann [24] categorized 173 errors found during the development of
four small programs by a single programmer. Again, there were no significant interfaces with
hardware and little system testing. The most frequent class of errors, other than coding and
clerical, was design errors. All three of the most common design errors--cxtrcmc conditions
neglected, forgotten cases or steps, and loop control errors- arc also common functional
faults on the spacecraft.

Both the findings presented in [21, 24] and in this paper confirm the common experience
that early insertion and late discovery of software errors maximizes the time and effort that
the correction takes. Errors inserted in the rcquirements and design phases take longer to
find and correct than those inserted in later phases (because they tend to involve complex
software structures). Errors discovered in the testing phasc take longer to correct (because
they tend to be more complicated and diflicult to isolate). This is consistent with the results
in [20] indicating that more severe errors take longer to discover than lesssevere errors
during systcm-level testing. Furthermore, this effect was found to be more pronounced in
more complex (as measured by lines of code) software.

The work done by Indresisa direct forcrunner of Nakajo and Kume’s in that Endres
backtracked from the error type to the technicaland organizational causes which led to each
type of error [5], Moreover, because he studied the system testing of an operating systcm, the

13

software’s intcraction with the hardware was a source of concern. Endres noted the difficulty
of precisely specifying functions] demands on the systems before the programmer had seen
their effect on the dynamic behavior of the systein. Ilis conclusion that better tools were
needed to attack this problem still holds true cighteen years after he published his study.

Of the 432 errors that Endres analyzed, 46% were crrors in understanding or communi-
cating the problem, or in the choice of a solution, 38% were errors in implementing a solution,
and the remaining 16% were coding errors. These results arc consistent with the finding here
that software with many system interfaces displays a higher percentage of software errors
involving understanding requirementsor the systern implications of alternative solutions.

Eckhardtet al., in a study of software redundancy,analyzcd the errors in twenty inde-
pendent versions of a software component of an inertial navigation systcm [4]. They found
that inadequate understanding of the specifications or the underlying coordinate system was
a major contributor to the program faults causing coincident failures,

Add,, looking al the types of errors that caused safety problems in a large, real-time
control system, concluded that the design complexity inherent in such a system requires
hidden interfaces which allow errors in non-critical software to aflect safety-critical software
[1]. This is consistent with Selby and Basili’s results when they analyzed 770 software errors
during the updating of a library tool [25]. Of thc46 errors documented in trouble reports,
70% were categorized as “wrong” and 28% as ‘(missing.“ They found that subsystems that
were highly interactive with other subsystems had proportionately more errors than Icss
interactive subsystems.

Chill arcge ct al., classified defects from several operating systems and database manage-
ment systems according to type and trigger (c.g., boundary condition, exception handling,
etc.) [2]. By comparing the distribution of defect types tothe expected distribution for each
st age of development, the progress of a product's d evelopment can be monitored. Based on
the authors’ expericnce with similar products, they expect to find function defects peaking
at design testing, interface errors peaking at integration testing, and timing/serialization
errors peaking at systcm testing for the systems they analyze. The prevalence of interface
and timing errors is consistent with the data from the two spacecraft studied here. However,
the spacecraft both continue to display functional defects throughout system testing. This
is probably attributable to the continued evolution of software requirements driven by the
hardware, the interplanetary environment, and unique mission science needs.

Leveson listed a set of common assumptions that arc often false for control systems,
resulting in software errors [13]. Among these assumptions arc that the software specification
is correct, that it is possible to predict realistically the software’s execution environment
(e.g., theexistence of transients), and that it is possible to anticipate and specify correctly
the software’s behavior under all possible circumstances. These assumptions tend to be
true for the simple systems in which software errors have been analyzed to date and false for
spacecraft and other large, safety-critical, embedded systems. ‘1'bus, while studies of software
errors in simple systems can assist in understanding internal errors or some functional errors,
they are of less help in understanding the causes of safety-related software errors, which tend
heavily to involve interfaces or recognition of complex requirements.

Similarly, standard measures of the internalcomplexity of modules have limited uscfulness
in anticipating software errors during system testing. It is not the internal complexity of a
module butthe complexity of the module’s connection to its environment that yields the

14

persistent, safety-rclatccl errors seen in the embedded systems here {1 O].

V. Discussion

The results in Sect. 111 indicate that safety-rclatccl software defects arc distributed somewhat
differently over the set of possible causes than non-safety-related software defects in the
systems studied. Finding the prevalent causcs of safety-related software errors in these two
systeims may help guide the devclopment of strategies to reduce such errors in other similar
systems. By targeting the causes of safety-related errors, system safety may be directly
enhanced.

The results of the analysis of safcty-rclated software errors in the two spacecraft can be
interpreted as guidelines for preventing such errors in future, similar systems.

1. Focus on the interfaces between the soflware (Lid the systemin analyzing the problem
domain, since these interfaces are a major source of safety-related software errors.

The traditional goal of the requirements analysis phase is the specification of the soft-
ware's external interface to the user. Thisdecfinition is inadequate when the software is
deeply cmbcedded in larger systems such as spacccrafl, advanced aircraft, air-traflic control
units, or manufacturing process-control facilities. In such systeins, the software is often
physically and logically distributed among various hardware components of the system.The
hardware involved may be not only computers but also sensors, actuators, gyros, and science
instruments [1 1].

Specifying the external behavior of the software (its transformation of software inputs
into software outputs) only makes sense if the interfaces between the system inputs (e.g.,
cnvironmental conditions, power transients) and the software inputs (e.g., monitor data)
arc also specified. Similarly, specifying the interfaces- cspccially the timing and dependency
relationships- between the software outputs (e. g., star identification)and system outputs
(e.g., closing the shutter on the star scanner) is neccessary. [6, 12]

System-development issues such as timing (real-time activities, interrupt handling, fre-
quency of sensor data), hardware capabilities and limitations (storage capacity, power tran-
sients, noise characteristics), communication links (buffer and interface formats), and the
expected operating environment (temperature, pressure, radiation) need to be reflected in
the software requirements specifications because they are frequently sources of errors involv-
ing interfaces.

Timing is a particularly difficult source of safety-related software interface errors since
timing issues arc so often integral to the functional correctness of safety-critical, embed-
ded systems, Timing dependencies (e.g., how long input data is valid for making control
decisions) should be included in the software interface specifications. Analytical models or
simulations to understand system interfaces arc particularly useful for complex, cmbcddcd
systems.

2. Identify safety-critical hazards early in the requirements analysis.

These hazards arc constraints on the possible designsand factors in any contemplated
tradeoffs between safety (which tends to encourage software simplicity) and incrcascd func-

15

tionality (which tends to encourage software complexity) [12, 25]. Many of the safety-related
soft ware errors in the two spacecraft involve datl a ob jectsor processes that would be t argeted
for special attention using hazarcl-detection techniques such as those described in [9, 13).
Farly detection of these safety-critical objects and incrcased attention to the software oper-
ations that usc them might forestall associated safety-related software errors.

3. Use formal specification techniques in addition to nalural-language soflware requirements
specifications.

I.ack of precision and incomplete rcquirementsled to many of the safety-rcjatccl software
errors seen here. Enough detail is needed to cover all circumstances that can be envisioned
(component failures, timing constraint violations, expired data) aswellas to document all
environmental assumptions (e.g., how closc to the sunaninstrument will point) and as-
sumptions about other parts of the systecm (maximum transfer rate, conscquences of race
conditions or cycle slippage). The capability to describe dynamic events, the timing of pro-
ccss interactions in distinct computers, decentralized supervisory functions, etc., should be
considered in chooosing a formal method [3, 6, 17, 22, 23, 26]. Since cinbedded software
systems arc often quite large, formally specifying or analyzing the entire system may not
be feasible. Data on causes of safety-related errors may help guide the selection of the por-
tions of the software most likely to benefit from the added rigor of formal methods. In a
spacecraft currenil y un der devclopment, for example, error recovery software and critical
int erfaces have been identified for cxperiments in formal specifi cation.

4. Promote informal communication among leams.

Many safety-related software errors resulted from onc individual or team misunderstand-
ing a requirement or not knowing a fact about thesystem that member(s) of another de-
velopment t cam knew. The goal is to modularize responsibility in a development project
without modularizing communication about the system under development. Theidentifica-
tion and tracking of safety hazards in the two systems described here, for example, is clearly
best done across team boundaries,

5. As requirements evolve, communicalethe changes fothe development and test teams.

This is both more important (because there arc more requirements changes during design
and testing) and more difficult (becausc of the number and size of the teams and the length of
the development process) in a large, embedded system than in simpler systems. in analyzing
the safety-related software errors, it is evident that the determination as to who needs to
know about a change is often made incorrectly. Irequently, changes that appear to involve
only onc team or system component end up aflccting other teams or components at some
later date (sometimes as the result of incompatible changes in distinct units).

There is also a need for faster distribution of changes that have been made, with the
update stored so as to be fingertip accessible. CASE tools offer a possible solution to the
difficulty of promulgating change without increasing paperwork.

The prevalence of safety-related software errors involving misunderstood or missing re-
quirements points up the inadequacy of consistency checks of requirementsand code as a
means of demonstrating systcm correctness [1 2]. Code that implements incorrect rcquire-
ments is incorrect if it fails to provide needed system behavior.

16

Similarly, generating test cases from misunderstood or missing requirements will not test
system correctness. Traccabilily of requirements and automatic test generation from spccifi-
cations offers only partial validation of complex, embedded systems. Alternative validation
and testing methods such as those described in [1 1, 13] offer greater coverage.

6. Include requirements for “defensive design” [19].

Many of the safety-related software errors involve inadequate software responses to ¢x-
treme conditions or exireme values. Anomalous hardware behavior, unanticipated states,
events out of order, and obsolete data all contribute to safety-related software errors on the
spacecraft.

Run-time safety checks on the validity of input data, watchdog timers, delay timers, soft-
ware filters, software-imposed initialization conditions, additional exception handling, and
assertion checking can be used to combat the many safet y- cri tical software errors involving
conditional and omission faults [13]. Requirements for error-hanclling, overflow protection,
signs] saturation limits, heartbeat and pulse frequency, maximum event duration, and sys-
tcm beliavior under unexpected conditions can be added and traced into the design. Many
safety-related functional faults involve error- recovery rout incs being invoked inappropriate] y
because of erroneous limit values or bad data.

Backward analysis from critical failures to possible causes offers onc check of how de-
fensive the requirements and design arc [14], Requirements specifications that account for
worst- case scenarios, models th at can predict the range of possible (rather than allowable)
values, and simulations that candiscover uncxpected interactions before system testing con-
tribute to the system’sdefense against hazards.

V1. Summary and Future Work

In large, embedded systems such as the two spacecraft in this study, the software rcquire-
ments change throughout the software devclopment process, even during system testing.
This is largely duc to unanticipated behavior, dynamic changes in the operating cnviron-
ment, and complex software/hardware and software/software interactions in the systems
being developed. Controlling requirement changes (and, hence, the scope and cost of devel-
opment) is difficult since the changes arc often prompted by an improved understanding of
the software’s necessary interfaces with the physical components of the spacecraft in which
it is embedded. Complex timing issues and hardwarc idiosyncrasies often prompt changes
to requircments or to design solutions.

The analysis presented here of the cause/effect relationships of safety-rclatcd software
errors pinpoints aspects of system complexity which merit additional attention, Spccifically,
the results have shown that conditional faults (e.g., condition or limit valucs) arc highly
correlated with safety-related software errors. Operating faults (especially the omission of
run-time rcasonableness checks on data) arc also highly correlated with safety-related soft-
ware errors. Unknown, undocumented, or erroneous rcquircments frequent]l y arc associated
with safet y-relat cd software errors as wc]]. Il ard ware/software int erfaces h ave been shown
to be a frequent trouble spot because of the lack of communication between teams.

The results presented in this paper indicatca need for better methods to confront the

17

real-worlcl issues of devcloping safety-critical, embedded software in a complex, distributed
systern. Future work will be dirccted at incorporating knowledge of the distinct. error mech-
anisms that produce safety-related software errors into the rcquirements analysis and vali-
dation processes. Follow-on studics will evaluate theadequacy and repeatability of the error
classifications used here. Additional cxperimentsto test the proposed guidelines both in
similar, future systems and in a cross-section of ecmbedded software would be useful. Work
is also nceded on specifying how the results presented in this paper can be used to predict
more precisely what features or combinations of factors in a safety-critical, embedded system
arc likely to cause time-consurning and hazardous software errors.

References

[1]
(2
(3
4
(9
(6]

(7
(8]

9

[10]
[1]

[12]
[13]

[14]

. A. Addy, “A Case Study onlsolation of Safety-Critical Software,” in Proc 6th Annual
Conf on Computer Assurance. NIST/IEEY, 1991, pp. 75-83.

R. Chillarege, et al., “Orthogonal Defect Classification- A Concept for 111-1'recess Measure-
ment s” IFEE Trans Soflware F'ng, 1S, 11, Nov 1992, pp. 943-956.

A. M. Davis, Software Requirements, Analysis and Specification. Englewood Cliffs, N. J.:
Prentice Hall, 1990.

D. E. Fckhardt, et a., “An Experimental Evaluation of Software Redundancy as a Strategy
for improving Reliability,” IFEE Tram Software I'ng, 17, 7, duly 1991, pp. 692-702.

A. Endres, “An Analysis of Errors and ‘Jheir Causcs in Systems Programs,” IEEF Trans
Software I'ng, SE-I, 2, June 1975, pp. 140-149.

E. M. Gray and R. 11. Thayer, “Requirements,” in A erospace Soflware Engineering, A Collec-
tion of Concepts. Ed. C. Anderson and M. Dorfinan. Washington: AIAA, 1991, pp. 89--121.

ANSI/IEEE Standard Glossary of Software Enginecring Terminology. New York: IEEE, 1983.

JEEY, Standard Dictionary of Measures To Produce Reliable Software, Std 982,1-1988, Ncw
York: 1EEE, 1989.

M. S. Jaflect d., “Software Requirements Analysis for Real-Time Process- Control Systems,”
1EEE Trans Software Fng, 17, 3, March 1991, pp. 241-258,

1'. Jalote, An Integrated Approach to Software Ingincering. New York: Springer-Vcerlag, 1991.

J. C. Knight, “Testing,” in Aerospace Softwarc Engineering, A Collection of Concepts. Ed.
C. Anderson and M.Dorfman. Washington: AIA A, 1991, pp. 135--159.

N. G. Leveson, “Safety,” in Aerospace Software I'nginecering, A Collection of Concepts. Ed.
C. Anderson and M. Dorfinan. Washington: AIA A, 1991, pp. 319-336.

N. G. Leveson, “Software Safety in Embedded Computer System s,” Commun A CM, Vol. 34,
No. 2, Feb 1991, pp. 35--46.

N. G. Levesonand P. R. Harvey, “Analyzing Software Safety,” IIXFE Transactions on Software
Engineering, SI-9,5, Sept 1983, pp. 569-579.

18

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Karan 1’Hleurcux, “Software Systems Safety Program RTOP,Phase A Report,” Internal
Document, Jet I'repulsion laboratory, April 19, 1991,

R. Lutz, “Anayzing Software Requirements Ilrrorsin Safety-Critical, Embedded Systems,”
Proc IELRE Internat Symp on Requirements Engincering. Los Alamitos, CA: 1EEL Computer
Society Press, 1993, pp. 126-133.

R.Lutz aud J. S. K. Wong, “Detecting Unsafe Irror Recovery Schedules,” IEEE Trans
Soflware F'ng, 18, 8, Aug, 1992, pp. 749-760.

T. Nakajo and 11. Kume, “A Case History Analysis of Software Error Cause -13{Tect Relation-
ships,” IEEE Trans Software I'ng 17, 8, Aug 1991, pp. 830-838,

}'. G. Neumann, “The Computer-ltc]atcd Risk of the Year: Weak Links and Correlated
Events,” in Proc6th Annual cont on Computer Assurance. NIST/IFEE, 1991, pp. 5-8.

A, P.Nikora, “Error Discovery Rate by Severity Category and Time to Repair Software
Failures for Three J] 'I, Flight Projects,” Internal Document, Jet Propulsion laboratory,
1991.

‘J. J. Ostrand and E. J. Weyuker, “Collecting and Categorizing Software Error Data in an
industrial ¥nvironment,” The Journal of Systems and Software, 4, 1984, pp. 289-300.

Proc Berkeley Workshop on7Temporal and Real-Time Secification. Eels. P. B.Ladkin and F.
II. Vogt. Berkeley, CA: International Computer Science Institute, 1990, TR-80-060.

J. Rushby, “Formal Methods and Digital Systems Validation for Airborne Systems,” CSI.
Technical Report, SRI-CS1.-93-07, Nov 1993.

N. }*.Schneidewind and 11,-M. Hoflmann, “An Experiment in Software Error Data Collection
and Analysis,” I1IYEF Trans Software Isng, SE-5, 3, May 1979, pp. 27 6-286.

R. W. Selby and V. R. Basili, “Analyzing Error-Prone System Structure,” IFEE Trans Soft-.
ware Fngl7, 2, Febr1991, pp. 141-152.

J. M. Wing, “A Specifier’s Introduction to Formal Methods,)’ Computer, Vol. 23, Sept 1990,
pp. 8-26.

Appendix
Non-Safety-Re lated Sufety-Related
Program Faults Program Faults
Voyager (60) Galileo (132) Voyager (7/) Galileo (121)
TInternal 2% (1) 4% (5) 0% (o 2% N
Interface 33% (20) 18% (24) 35% (26) 19% (23)
Functional 65% (39) 78% (103) 65% (48) 79% (96)

Table 1. Classification of Program Faulls

19

Non-Safety-Related Safety-Related

Functional Faults Functional Faults
| . Vayed@9)Galilede§1f083) Voyager (48) Galileo (96)
Operating 26% (10) 43% (440) 19% (9) 43% (4D
Conditiana 20% 8 4% (49) 31% (15 18% (17)
Belavioral 54% (21)) ©3% ““(s5) s0% (24) 40% (38) |

‘l’able 2: Classification of Functional Faulis

Non-Safety-Relaled Safety- Related
Interface Faulls Interface Faulls
Voyager (20) Galileo (24) Voyager (26) Galileo (23)
1. Intra-team Communication 5%) 33% (8) 8% (2) 22% (5)

11. Interteam Communication:

11 ardwarc/SoftwarcInterface 30% (6) 38% (9) 65% (17) 48% (11)

Software Interfaces 65% (13) 20% (1) 27% (7) 30% (7

g able 3: Relalionships of Root Causes (Human Irrors)lo Interface Feulls

Non-Safety-Rela ted "= - Safety-Related
Functiona Faults functional Faults
Voyager (39) Galileo (103) Voyager (48) Galileo (96)
1. Requirement Recognition:

Operating 10% (4) 17% 17 8% (4 33% (32
Con dition d 8% 3) 0% (1) 25% (12) 16% (15)
13chavioral 10% (4) 29% (30) 29% (14) 30% (29)
Total 286% (11) 47% (48) 62% (30) 79% (76)
11. Requirement Deployment:

Operating 15% (6) 26% (27) 11% 5 9% 9)
Conditional 13% (5) 3% 3) 6% 3) 2% 2
Behavioral 4% (17) 24% (25) 21% (10) 9% (93
Total 72% (28) 53% (55) 38% (18) 21% (20)

g'able 4: Relationships of Root Causes (Human Isrrors) to Functional Faulls

20

Non-Safcty-Related safety- Related
Interface Faults Interface Faults
Voyager Galileo (2/)) Voyager Galileo
1. Control of System Complexity: -
interfaces not understood 90% (18) 83% (20) 54% (14) 87% (20)
Hardware anomalies _ . 0% _(2) 17% __ (4) 46% (12) 13% (3)
11. Communication /Development: — T 7 -
Int erface specifications 35% (7 42% (10) 8% (2) 35% (8)
Interface design lags 35% @ 4% (1) 19% e 0% (o)
Intertecam communication 20% (4) 21% (5) 27% (7) 35% (8)
Undocumented hardware 10% (2) 33%__. (27*4;(75("/‘{)___ . (]?),30%“47)
Table 5: Process Flaws Causing Interface Faults
Non-Safety-Rela ted ~ Safety-Related
Functional Faults Junctional Faulis

1. Control of System Complexity:
Requirements not identified 28% (11) 46% (47) 44% (21) 60% (58)
Requirements not understood 72% (28) 54% (56) 56% (27) 40% (398)
11. Communication/Development
Causing Frrors in Requirements

Voyager Galilco (103) Voyager (48) Galileo

Recognition:
Imprecise specification 10% (4) 18% (19) 21% (10) 38% (36)
Missing requirements 18% (7) 28% (29) 42% (20) 42% (40)

Communication /Development
Causing FErrors in Requirements

Deployment:

incomplete documentation 10% (4) 12% (12 2% 1 8% (8)
Persistent coding errors 28% (11) 13% (13) 10% 5 5% (5
Inadequate design 33% (13) 29% [30) 25% (12 ™% ()

‘1'able 6: Process IFFlaws Causing Iunctional Faulls

21

Index Terms

Software errors, software safety, requirements analysis, embedded software, system testing, software
specification, safety-critical systems, spacecraft,

22

